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ABSTRACT. Historically, the two-parameter lognormal distribution has been the method of choice when describing soil 
aggregate size distributions and generally provides a good description. However, the assumptions regarding the upper 
and lower extremes of the two-parameter lognormal ogive can limit its applicability to many tillage-induced aggregate 
size distributions. Two 3-parameter and one 4-parameter lognormal ogives are presented that can more accurately 
describe a wider range of field-sampled aggregate size distributions. Two computational techniques for determining 
values for the coefficients of these modified lognormal functions are discussed. One is a direct computation method, 
useful for applications where computation speed is a factor. The second method uses a nonlinear optimization technique, 
which will find the “best fit” parameter values more precisely, but requires more computational overhead. 
Keywords. Aggregate size distribution, Lognormal distribution, Curve-fitting, Frequency distribution. 

he size distribution of soil aggregates affects many 
facets of agriculture from wind erosion 
susceptibility (Chepil, 1950a, 1953) to seedbed 
suitability (Hadas and Russo, 1974; Schneider and 

Gupta, 1985). Gardner (1956) demonstrated that the two- 
parameter lognormal distribution provided a good 
description of the mass-based aggregate size distribution 
(ASD) of many soils. Kemper and Chepil(l965) concurred 
with Gardner, extolling the virtue of summarizing ASD 
data with only the two parameters, geometric mean 
diameter, xg, and geometric standard deviation, o g .  
Unfortunately, they did not recommend this method for 
general use because of the extensive work required to 
adequately sieve field samples and the computational effort 
required to determine the parameters. This led to the 
adoption of many less meaningful measures of ASD. For 
this reason, Hagen et al. (1987) presented a computerized 
iteration procedure that required only two sieves to 
determine the parameters for a standard, two-parameter 
lognormal ogive to characterize ASD of dry soil. The one 
caveat that Gardner mentioned is that any field-sampled, 
ASD will exhibit some deviation at the extremes from a 
standard lognormal ogive. Hagen et  al. (1987), also 
realizing this limitation, suggested the possibility of using 
three- or four-parameter lognormal forms if the tails of the 
distributions are important to the application of the data. 
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Knowing the complete ASD provides useful 
information about wind erosion processes. Examples 
follow: 

Given different ASDs with the same percentage of 
erodible aggregates (less than 0.84 mm), Chepil 
(1950b) showed that ASDs with smaller 
nonerodible aggregates resulted in more rapid 
surface armoring and, thus, a less erodible fraction 
available for direct emission. Thus, many small 
nonerodible aggregates provide more surface cover 
and shelter for the erodible soil than do a few large 
non-erodible aggregates. Therefore, with a 
complete ASD, it is possible to determine the 
amount of “shelter” provided by nonerodible 
aggregates (Wagner and Hagen, 1991). 
Given a complete ASD and a shelter angle 
distribution (Potter et al., 1990) and assuming that 
the smallest aggregates are residing in the most 
sheltered areas, we can: 
0 compute the fraction of soil surface where 

friction velocity is above saltation threshold 
0 compute the volume of particles available for 

emission (Hagen, 1991) 
0 estimate the fraction of PM-10 (sub 10-pm-size 

particles) present for direct emission [PM-10 has 
health and regulatory implications (Stonefield, 
1988; Barnard et al., 1992)] 

With a complete ASD, the effect of sorting by wind 
erosion can be determined. Size ranges for saltation, 
suspension, and emission materials change with 
windspeed and surface roughness. Therefore, these 
components can be studied together in relation to 
surface ASDs obtained following wind erosion 
events. 

Knowing the complete ASD is also important to 
modeling tillage processes. Many tillage-induced ASDs are 
influenced by the amount and size of the largest aggregates 
in the field prior to tillage. Wagner and Ding (1993) 

VOL. 37(3):815-821 
Transactions of the ASAE 

1994 American Society of Agricultural Engineers 815 



showed that disk tillage operations primarily break down 
large aggregates (greater than 50 mm) when they are 
present, but reduce a wide range of aggregate sizes when 
large aggregates do not exist. Therefore, the resulting post- 
tillage ASD is dependent upon the pre-tillage ASD. Future 
advances in modeling aggregate breakdown by tillage 
operations will necessarily require accurate representation 
of the pre-tillage ASD. 

The Wind Erosion Prediction System (WEPS), presently 
being developed by the USDA-Agricultural Research 
Service (Hagen, 1991), requires the dry ASD to be 
accurately represented on a daily basis within the model. 
The standard lognormal ogive implies that the smallest 
aggregate size is zero and the largest size is infinite. 
Agricultural soils however have upper and lower size 
limits, which account for ASD deviations from 
lognormality. These deviations become more pronounced 
when sorted into additional size classes to more accurately 
estimate the “true” ASD. For these reasons, a more 
complete method of representing ASD was desired for 
WEPS . 

Kottler (1950a), Irani (1959), and Irani and Callis 
(1963) examined situations that arose when data 
conforming to lognormality had all sizes greater than or 
less than a specified size (or both) removed from the data 
set. The modified data sets were actually similar to many 
of the data sets typically presented as being lognormal 
distributions. In these “nonideal” cases, physical 
constraints limit the “growth” or “breakdown” process, 
and, therefore, were not truly lognormal. They showed that 
the “limited growth” and “limited breakdown” processes 
could still easily be represented by a lognormal ogive when 
simple transformations were applied that satisfied the new 
boundary conditions. 

By introducing these two, potentially physically based 
parameters, a transformation can be established between 
the real distribution of the data and the standard lognormal 
distribution, resulting in a modified lognormal distribution. 
Since all dry ASDs have some physical limiting maximum 
and minimum sizes, modified lognormal ogives should 
presumably be more accurate in representing entire ASD 
distributions. The purpose of this article is to describe the 
procedures required to determine the parameters of the 
modified lognormal ogive and present methods for 
computing their values. Comparisons between the standard 
and modified lognormal ogives were made using actual 
ASDs determined from sieved field samples. 

THEORY 
Particle sizes, such as soil aggregate sizes, are 

frequently found empirically to fi t  the lognormal 
distribution function. If x is the quantity being measured 
and is to be described by a lognormal distribution, then 
y = ln(x) has a normal distribution n(y) (eq. l),  in which 
the parameters p and o2 are respectively, the mean and the 
variance of the y values. Because n(y) is symmetric about 
the mean, p is also the median of the normal distribution 
(on the average, half the y values will be greater than p and 
half will be less). Since x is the quantity being measured 
(e.g., aggregate size), it will be found to be distributed with 
a density function, p(x), where p(x)dx is the probability 
that a measured value will fall within the range [x, x + dx]. 

Because p(x) and n(y) describe the same phenomenon, the 
probability of obtaining values in corresponding dy and dx 
intervals must be equal, Le., p(x)dx = n(y)dy. Thus, the 
lognormal distribution p(x) is given by equation 2. 

The average value of x is defined as: 

x,, lom x p( x) dx = 1: eY n (y) dy (3) 

Because y = ln(x), we have the median value, x, = 
exptp). By substituting this and equation 2 into equation 3 
and integrating we have xav = exp(p+02/2).  For a 
lognormal distribution, o2 is always larger than zero; thus, 
the lognormal distribution can be fully described by the 
median size, x,, and the mean size, xav. In other words, 
from the observed mean and median, values for p and o2 
of the approximating lognormal distribution can be 
estimated as p = ln(x,) and o2 = 2[ln(xaV)-p] = 

However, most lognormal distributions are expressed in 
terms of the geometric mean, xg, and geometric standard 
deviation, og, which are defined as xg = exp(p) and og = 
exp(o),  respectively. Substituting xg and og into 
equation 2, p(x) can be expressed in terms of xg and or 
For many analyses, it  is often useful to express the 
measured distribution in terms of the cumulative 
probability distribution, F(x), which is the probability 
(or frequency) that a measured value will be less than or 
equal to x. If t = ln(x/xg)/ln(og), then for the lognormal 
distribution, this cumulative distribution function of x is 
given by: 

2[ln(xav)-ln(xm)l* 

r x  r t  
F(x)= p(x)dx= - e-”2dt= 2 Jo 6 ‘ J  -m 

Thus, the probability of x, P(% I x) and P(% 2 x), in 
terms of percent, can be calculated as: 

ln(x) - In(x,) 
P ( % I  x)= 100F(x)=50+50erf 

P (%2 x)= 100-P(%I x) ( 5 )  
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Kottler (1950a) treated particle size distributions from a 
kinetic point of view. He discussed the concept of “limited 
growth” in which most phenomena of normal growth have 
a rate that increases only during an initial period and 
afterwards decreases gradually. He introduced a lower 
limit, x, (corresponding to the absolute minimum particle 
size), which must be greater than zero and an upper limit, 
x, (corresponding to the absolute maximum size obtained), 
which must be less than infinity. By using the trans- 
formation, x’ = (x - x,)(x, - x,)/(x, - x) in which x is in 
the range of [x,, x,], where 0 I x, c x, c +,, a more 
general four-parameter lognormal case, equation 6, can be 
introduced. 

The corresponding cumulative distribution function, in 
terms of percent, are: 

P’(% 2 x)= loo-P ’(% I x) (7) 

Both xlg and dg can be determined from computational 

g: 
procedures discussed later. To obtain the xg value from x’ 
simply perform the reverse transformation operation of x 
as shown in equation 8. Note that xg is the 50% value, ~ 5 0 ,  
and represents the “middle” of the distribution. 

x‘gx,+ xoxm- x; 
x = x5()= 

?2 
x,- x,+ x’ g 

To obtain the og value from o ’ ~ ,  compute the arithmetic 
average of the x’ values, x’,,: 

to obtain xav, perform the transformation as shown in 
equation 10 on x’,,: 

x’,,x,+ X$,- xz 

xm- x,+ Xfav 
xav = 

and then compute og as a function of x,, 
in equation 1 1. 
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and xg as shown 

(1 1) 

If x, = 0 and x, + 00, this general case, equation 6, will 
reduce to the simple or standard, two-parameter lognormal 
distribution, equation 2, and its corresponding cumulative 
distribution function, equation 5. Either of the three- 
parameter forms are derived when the lower value, x,, 
equals zero or the upper value, x,, approaches infinity. All 
of these lognormal forms are summarized in table 1. 

COMPUTATIONAL PROCEDURES 
Two methods of computing the parameters for the four 

forms of the lognormal ogives discussed here were 
implemented. One method uses a direct computational 
scheme, and the second employs a nonlinear optimization 
technique to determine the “best” parameters based on the 
cumulative distribution curve. 

The direct computational scheme outlined by Allen 
(1981) and Campbell (1985) uses the assumption that the 
data are lognormally distributed and works best when the 
sieve cuts are sized according to a geometric progression. It 
requires an estimate of the minimum size, xmin, and the 
maximum size, xma, (to determine the geometric means, 
xg(o) and Xg(n), of the smallest and largest sieve cuts 
respectively). Also, if a modified lognormal form is being 
used, the additional constraints must also be followed: 
Xmin c X? c xg(o), and xg(n) X, Xmax* 

The disadvantages of this method are that: 
An estimate of the geometric means of the smallest 
and largest sieve cuts must be made. 
The limits of the distribution, x, and x,, must be 
known (or their ranges known if an optimization 
technique is employed to determine them). 
Due to the constraints on x, and x,, if the smallest 
and/or largest sieve cuts have no material in them 
for a particular distribution, they must be removed 
from the computations if the limiting parameters, x, 
and/or x,, need to fall within those size ranges. 

The benefit of the direct computational scheme is that it 
is very fast and does not require any iterative procedures, 
making it suited for applications where speed is critical. 

For the direct computational procedure, the estimated 
(or sample) geometric mean diameter, x’~,  and geometric 
standard deviation, dg, are: 

where 

a 

b = [ ,P [miln2(x’g,i))]-a2]z 1 

1-1 

i = sievecut 

geometric mean within sieve cut i 
n = total number of sieve cuts 
mi = mass fraction of sieve cut i 
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Table 1. Standard and modified lognormal forms computer program, code-named “asd”, was written to assist 
Case be-normal Form Constraints parameters in the model parameter identification process*. The “asd” 

x,* 0, I standard2-parameter 0s x < m 

I1 modified 3-parameter 0 I x I x, e m x’,. d,, x, 
I11 modified 3-parameter 0 e xo I x e m x’,. d,, xo 
IV modified Cparameter 0 e xo 5 x 5 x, < m x’,. d,, xo, x, 

The second method uses a constrained optimization 
procedure to estimate the parameters of the cumulative 
frequency curve for any of the selected lognormal forms 
(equation 6). We chose to use forms of the downhill 
simplex method in multidimensions (Press, et al., 1986). 
The function used to determine the “best fit” was the 
weighted sum of the squared residuals due to error (SSE) 
as shown in equation 13. 

SSE - [w,(^y, - yi)2] (13) 
i -  1 

where 
i -datavalue 
n 
xi 
yi 
$i 
wi 
The actual and predicted probabilities less than 

(or greater than) the sieved sizes were used asAthe y values. 
Kottler (1950b) suggested that “fitting” lognormal data 
should generally employ a probability weighting factor if 
the 50% point is of greatest interest. Kottler went on to 
explain that these weighted least squares, Mueller Weights, 
are required for curve-fitting to a standard lognormal ogive 
to compensate for the exaggerations due to the probability 
scale on a Probability Graph, which is actually a t-scale 
and not a P-scale. Additional weighting schemes may also 
be employed depending upon the region of interest, type of 
data, and experimental errors encountered. However, when 
working with the modified lognormal forms, the curve-fit 
errors usually associated with the tails of the distribution 
are reduced sufficiently that a unit weighting factor is 
usually adequate for the modified lognormal forms. 

The limitation of the method is that it is an iterative 
procedure and, therefore, may not be appropriate for use in 
applications where speed is critical. Nevertheless, it will 
determine the “best fit” without the limitations and 
assumptions required of the direct computation procedure. 
It does need estimates of the upper and lower ranges for 
each of the parameters being determined. These can be set 
broadly enough to encompass all expected size 
distributions. Narrower ranges, if known, will allow the 
optimization procedure to “close in” on the solution faster, 
but are not strictly required. By setting the upper and lower 
ranges equally for a particular parameter, then the 
optimization routine would effectively force the “best fit” 
model to have the desired value for that parameter. 

Since computational complexity was cited as one of the 
reasons for lognormal distributions not being universally 
adopted as a measure of soil ASD (Hagen et al., 1987), 
despite the advantages listed by Gardner (1956), a 

= total number of data values 
= sieve size for data value i 
= actual P’ (% I xi) 
= estimate of P’ (% I xi) 
= weighting factor for data value i 

program is written in the C language, contains both a 
command-line and a menu-based user interface, and can 
display the results graphically onscreen for visual feedback 
on the “goodness of fit”. The program can run under either 
DOS or the UNIX operating system. The main functions 
available to the user are: executing the curve fit analysis 
routine, viewing the output either numerically or 
graphically on the screen or to a printer, selecting the 
curve-fit analysis choices and options, and creating a 
default configuration file. 

The ASD data sets presented as examples were obtained 
on a range of soils from several experimental field studies, 
some of which have been published (Tangie et al., 1990; 
Ambe, 1991; and Wagner et al., 1992), under a variety of 
aggregate formation conditions. ASD samples 
(approximately 10 kg) were collected from the first 15 cm 
or from within the tillage tool processing depth if a post- 
tillage sample. The samples were extracted using a 30 x 
23 cm flat, square-cornered shovel, as described by Chepil 
(1962), and placed in 46 x 30 x 6 cm plastic tubs. All ASD 
samples were air-dried in a greenhouse prior to sieving 
with a modified combined rotary sieve (Lyles et al., 1970). 
Some of the ASD sets also had the smallest size class 
obtained from the rotary sieve (< 0.42 cm) sieved into 
smaller size classes with a sonic sieve. 

DISCUSSION 
Because the field ASDs physically have lower and 

upper size limits, the four-parameter, modified lognormal 
function is recommended for describing the distribution. If 
only one of the distribution tails is of interest or there is 
insufficient sampling within one of the tail regions, 
selection of the appropriate three-parameter, modified 
lognormal function may be adequate. If only the geometric 
mean size of the distribution is of interest, then a standard 
lognormal function determined with Mueller weights may 
suffice. 

The standard, two-parameter lognormal distribution is 
completely described by xg and og. By definition, the 
geometric mean, xg, for the two-parameter lognormal 
function directly provides the size at which 50% is greater 
and 50% is less than its value. The geometric standard 
deviation, og, is defined as the ratio of the size at 84.13% 
probability to the size at 50% probability (or the size at 
50% probability to the size at 15.87% probability) and 
indicates the dispersion or range of sizes for a two- 
parameter lognormal function. 

The addition of new parameters for the modified 
lognormal functions allow more accurate descriptions of 
typical size distributions, but makes comparisons of such 
size distributions more difficult. Both xlg and dg 
parameters represent the physical relationships mentioned 
above, but they apply to the transformed variable, x’, and 
not to the original variable, x, for the modified lognormal 
functions. Both x ’ ~  and olg are defined in terms of the 

* Code employing the computational methods discussed are available 
upon request by sending a DOS compatible disk to the primary 
author. 
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Kim0 Silty Clay Loam 

Sieve Data 

0.1 1 10 100 

Aggregate size (rnrn) 

Figure 1-ASD sample showing effects of Mueller weighting on a 
standard lognormal fit and benefits of the modified lognormal. 

transformation variable, x’, and are functions of the xo and 
x, parameters. Therefore, the x ’ ~  and dg terms (table 1) 
for the modified lognormal functions are not directly 
comparable with each other or with xg and og terms from 
the standard lognormal function. Thus, care must be taken 
not to make comparisons and draw conclusions based 
solely on the modified lognormal parameters, x ’ ~  and dg, 
if the lower and upper limits, x, and x,, are not the same. 

Ropp (1 985) discussed this problem along with the 
tendency of many researchers to assume normality or even 
lognormality and then present only the fraction of interest. 
He suggested that the most effective method for displaying 
ASDs is to use a lognormal probability method. Because 
no one parameter or group of parameters can be defined for 
use when presenting and discussing all size distribution 
information, visual presentation of the data, and 
summarization of the parameters describing the complete 
distribution are requisite, especially when using one of the 
modified lognormal forms. 

The effectiveness of using modified lognormal 
distributions are illustrated in the following examples. 
Figure 1 is a post-tillage ASD from a Kimo silty clay loam 
(clayey over loamy, mesic Fluvaquentic Montmorillonitic) 
in which a very high percentage of large aggregates were 
formed from a chiseling operation. Figure 1 shows the 
benefit of Mueller weights over unit weights on the 
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I ,  I I I I , , ,  I , , , , , , , , I  , , , ~ , , , , I  , , , , ~ y  

0.01 0.1 1 10 100 

Aggregote size (rnm) 

Figure ZASD sample showing a four-parameter modified lognormal 
fit to the data. 

estimation of xg when using the standard two-parameter 
lognormal form. However, Mueller weighting does not 
necessarily improve the “fit” of a standard lognormal form 
to the full distribution as represented by this data set. A 
three-parameter, modified lognormal fit is also presented to 
show how it can better represent the full distribution, 
including the upper 30% of the ASD than the standard 
lognormal form with or without Mueller weighting. 

Figure 2 is an ASD from a Reading silt loam (fine-silty, 
mixed, mesic Typic Argiudoll) that had the smaller fraction 
sieved into additional size classes to more accurately 
determine the form of the lower tail of the distribution. 
Notice that this distribution also reflects a large amount of 
big aggregates that causes the cumulative distribution to 
deviate from a straight line in the upper 30% of the 
distribution similar to the ASD in figure 1. The four- 
parameter lognormal form fit this distribution very well 
and determined the lower limit, xo, to be 0.16 mm and the 
upper limit, x,, to be 45.9 mm (table 2). Due to the 
additional sieve cut  data at  the lower end of the 
distribution, it partially compensates the effect of the 
deviation from a lognormal distribution at the high end. 
Thus, the standard lognormal fit using Mueller weights 
does a fair job of representing the “middle” of this 
particular ASD. However, it does not represent either of 
the tails accurately. 

Table 2. Standard and modified lognormal coefficients for several aggregate size distributions 

soil Log-normal Form Weights x50 “e StdDev Wt r2 X’e “‘e X O  xa‘ 

Kimo 2-parameter 
2-parame ter 
3-parameter 

Reading 2-parameter 
Cparameter 

Keith 3-parameter 
Ulvsses 3-~arameter 

Unit 
Mueller 
Mueller 

Mueller 
Unit 

Unit 
Unit 

19.85 5.38 2.512 0.952 19.85 5.38 
22.44 5.38 0.471 0.984 22.44 5.38 
26.84 5.07 0.222 0.9% 35.63 14.60 108.8 

3.03 13.06 0.237 0.995 3.03 13.06 
3.48 9.28 0.428 0.998 3.74 22.06 0.016 45.9 

12.39 6.38 1.240 0.989 14.52 12.79 84.75 
O.% 14.47 0.454 0.997 0.98 22.21 47.65 
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Aggregate size (rnrn) 

Figure %Various ASD samples showing a three-parameter, modified 
lognormal fit to the data sets. 

Figure 3 contains several typical ASD samples for three 
different soil types. Since insufficient sieve cut data is 
available to describe the lower portion (< 0.42 mm) of 
these distributions, only a three-parameter, modified 
lognormal form was used to represent the distributions. 
The curve-fit parameters are presented in table 2 for these 
ASDs. One of the ASDs, the Reading soil, is the same one 
shown in figure 1, which represents a distribution with a 
very high percentage of large aggregates. The silt loam 
Ulysses soil (fine-silty, mixed, mesic, Aridic Haplustoll) 
contains the highest percentage of erodible aggregates 
(< 0.42 mm) and fewer large aggregates than either of the 
other two distributions. However, this soil sample still 
exhibits a sharp rise in the upper tail that cannot be 
accurately represented by a standard lognormal 
distribution. The silt loam Keith soil (fine-silty, mixed, 
mesic, Aridic Argiustoll) has a distribution bracketed by 
the other two soil’s ASDs. 

SUMMARY AND CONCLUSIONS 
Modified forms of the standard lognormal functions can 

be used effectively to describe a broader range of ASDs 
determined from sieving field samples. The modified 
methods assume that either a limiting, nonzero, minimum 
size and /o r  a finite maximum size exists, which is 
normally true for ASDs. Therefore, the modified lognormal 
forms usually can represent a size distribution more 
accurately, especially at the upper and lower tails, than a 
standard lognormal function when sufficient sieve cut data 
is available to describe the tails. A more accurate 
description of ASDs helps depict wind erosion processes in 
greater detail and allows models such as WEPS to better 
simulate them. A computer program was developed to aid 
in the quick determination of either the standard or 
modified lognormal parameters. 
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